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Abstract

Lattice fermions with suppressed high momentum modes solve the ultraviolet slowing down problem in lattice QCD.

This paper describes a stochastic evaluation of the effective action of such fermions. The method is a based on the

Lanczos algorithm and it is shown to have the same complexity as in the case of standard fermions.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

There has been recent interest in the so-called �Ultraviolet slowing down� of fermionic simulations in

lattice QCD [7,8,14,15,18]. These studies try to address large fluctuations of the high end modes of the

fermion determinant using various algorithms. The goal is to increase the signal-to-noise ratio of the in-

frared modes and to accelerate fermion simulations as well.

In fact, all the computational effort needed to treat UV-modes by above algorithms can be reduced to

zero by suppressing them in the first place [2]. The lattice Dirac operator of this fermion theory is given
by

D ¼ l
a

C5 tanh
aC5DW=S=o

l
; ð1:1Þ

where DW=S=o is the input lattice Dirac operator, a the lattice spacing and l > 0 is a dimensionless

parameter. For Wilson (W) and overlap (o) fermions as the input theory one has C5 ¼ c5. For stag-

gered fermions C5 is a diagonal matrix with entries þ1=� 1 on even/odd lattice sites. The theory

converges to the input theory in the continuum limit and is local and unitary as shown in detail in [2].

The input theory is also recovered in the limit l ! 1. For l ! 0 one has D ! l, i.e., a quenched

theory.
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Perturbative calculations with this theory are straightforward. To fix the idea I assume in the following

Wilson fermions to be input fermions. The inverse fermion propagator is given by

~DDðpÞ ¼ l
a

c5 tanh
a ~HHWðpÞ

l
ð1:2Þ

with p ¼ fpm; m ¼ 1; . . . ; 4g being the four-momentum vector. As usual, gauge fields are parametrized by

suð3Þ elements

UðxÞm ¼ eiagAðxÞm ; AðxÞm 2 suð3Þ ð1:3Þ

and the Wilson operator is written as a sum of the free and interaction terms

DW ¼ D0
W þ DI

W:

The splitting of the lattice Dirac operator is written in the same form

D ¼ D0 þ DI; D0 ¼ l
a

c5 tanh
aH 0

W

l
;

where the interaction term has to be determined. This can be done by expanding D in terms of a=l:

D ¼ DW 1

"
þ c1

aHW

l

� �2

þ c2
aHW

l

� �4

þ � � �
#
; ð1:4Þ

where c1; c2; . . . are real expansion coefficients. Calculation of DI is an easy task if one stays with a finite
number of terms in the right hand side of (1.4). Also, the number of terms can be minimized using a

Chebyshev approximation for the hyperbolic tangent. 1

In this paper I describe computational methods needed to evaluate the effective action of the theory

defined above. In particular, the complexity of the proposed Lanczos method does not depend on the input

sparse matrix that describes a fermion theory on the lattice.

In the following Section 1 derive a class of Lanczos based methods for computations with the proposed

theory and then in Section 3 conclusions follow.
2. Lanczos based methods for computations with fermions

The effective action of the theory defined above can be written as

Seff ¼ trf ðAÞ; ð2:1Þ

where A 2 CN�N and f ðsÞ is a real and smooth function of s 2 Rþ. The matrix A is assumed to be Hermitian

and positive definite. Since the trace is difficult to obtain one can use the stochastic method of Bai et al. [1].

The method bounds bilinear forms of the type
1 I would like to thank Joachim Hein for discussions related to lattice perturbation theory.
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Fðb;AÞ ¼ bTf ðAÞb; ð2:2Þ

where b 2 RN is a random vector. By evaluating lower and upper bounds of Fðb;AÞ for many such vectors

b, authors of Ref. [1] compute a confidence interval for the tr f ðAÞ.
The method described here is similar to the method of Bai et al. [1]. Its viability for lattice QCD

computations has been demonstrated in the recent work of Cahill et al. [6]. Bai et al. [1] derive their method
using quadrature rules and Lanczos polynomials. Here, I give an alternative derivation which uses familiar

tools (in lattice simulations) such as sparse matrix inversions and Pad�ee approximations. The Lanczos

method enters the derivation as an algorithm for solving linear systems of the form

Ax ¼ b; x 2 CN : ð2:3Þ
2.1. Lanczos algorithm

I follow standard texts as Golub and Van Loan [11] and notations and arguments of Boric�i [3–5]. n steps

of the Lanczos algorithm [17] on the pair ðA; bÞ are given by Algorithm 1.
Algorithm 1 The Lanczos algorithm

Set b0 ¼ 0; q0 ¼ o; q1 ¼ b=kbk2
for i ¼ 1; . . . ; n do

v ¼ Aqi

ai ¼ qy
i v

v :¼ v � qiai � qi�1bi�1

bi ¼ kvk2
qiþ1 ¼ v=bi

end for
The Lanczos vectors q1; . . . ; qn 2 CN can be compactly denoted by the matrix Qn ¼ ½q1; . . . ; qn�. They are

a basis of the Krylov subspace Kn ¼ spanfb;Ab; . . . ;An�1bg. It can be shown that the following identity

holds:

AQn ¼ QnTn þ bnqnþ1eTn ; q1 ¼ b=kbk2: ð2:4Þ

en is the last column of the identity matrix 1n 2 Rn�n and Tn is the tridiagonal and symmetric Lanczos matrix

(2.5) given by

Tn ¼

a1 b1

b1 a2
. .
.

. .
. . .

.
bn�1

bn�1 an

0
BBBB@

1
CCCCA: ð2:5Þ

The matrix (2.5) is usually referred to as the Lanczos matrix. Its eigenvalues, the so called Ritz values, tend

to approximate the extreme eigenvalues of the original matrix A as n increases.

To solve the linear system (2.3) I seek an approximate solution xn 2 Kn as a linear combination of the

Lanczos vectors
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xn ¼ Qnyn; yn 2 Cn; ð2:6Þ

and project the linear system (2.3) on to the Krylov subspace Kn:

Qy
nAQnyn ¼ Qy

nb ¼ Qy
nq1kbk2:

Using (2.4) and the orthonormality of Lanczos vectors, I obtain

Tnyn ¼ e1kbk2;

where e1 is the first column of the identity matrix 1n. By substituting yn into (2.6) one obtains the ap-
proximate solution

xn ¼ QnT�1
n e1kbk2: ð2:7Þ
2.2. Algorithms for the bilinear form (2.2)

The theoretical framework of the algorithm of Bai et al. [1] can be based on the Pad�ee approximation of

the smooth and bounded function f ð�Þ in an interval [13]. Without loss of generality one can assume a

diagonal Pad�ee approximation in the interval s 2 ð0; 1Þ. It can be expressed as a partial fraction expansion.

Therefore, one can write

f ðsÞ �
Xm

k¼1

ck

s þ dk
ð2:8Þ

with ck 2 R; dk P 0; k ¼ 1; . . . ;m. Since the approximation error Oðs2mþ1Þ can be made small enough as m
increases, it can be assumed that the right-hand side converges to the left-hand side as the number of partial

fractions becomes large enough. For the bilinear form I obtain

Fðb;AÞ �
Xm

k¼1

bT ck

A þ dk1
b: ð2:9Þ

A first algorithm can already be written down at this point. Having computed the partial fraction coeffi-

cients one can use a multi-shift iterative solver of Freund [9] to evaluate the right hand side (2.9). To see

how this works, I solve the shifted linear system

ðA þ dk1Þxk ¼ b

using the same Krylov subspace Kn. A closer inspection of the Lanczos algorithm, Algorithm 1 suggests

that in the presence of the shift dk I get

ak
i ¼ ai þ dk;

while the rest of the algorithm remains the same. This is the so-called shift-invariance of the Lanczos al-

gorithm. From this property and by repeating the same arguments which led to (2.7), I get

xk
n ¼ Qn

1

Tn þ dk1n
e1kbk2: ð2:10Þ
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Using the shift-invariance of the Lanczos algorithm I obtain Algorithm 2.
Algorithm 2 The Lanczos algorithm for solving ðA þ dk1Þxk ¼ b

Set b0 ¼ 0; q1
1 ¼ 1=kbk2; q0 ¼ o; q1 ¼ q1

1b; xk
0 ¼ o; ~xxk

0 ¼ o; qk
0 ¼ 0

for i ¼ 1; . . . do
v ¼ Aqi

ai ¼ qy
i v

v :¼ v � qiai � qi�1bi�1

bi ¼ kvk2
qiþ1 ¼ v=bi

for k ¼ 1; . . . ;m do
~xxk
iþ1 ¼ �ð~xxk

i ai þ ~xxk
i�1bi�1Þ=bi

qk
iþ1 ¼ �ðqk

i ai þ qk
i�1bi�1Þ=bi

rk
iþ1 ¼ qiþ1=qk

iþ1

xk
iþ1 ¼ ~xxk

iþ1=q
k
iþ1

end for

if 1=jq1
iþ1j < � then

n ¼ i
stop

end if

end for
Note that the residual errors rk
i ; i ¼ 1; . . . ; n; k ¼ 1; . . . ;m are given by

rk
i ¼ b � Axk

i � dkxk
i :

In exact arithmetic their norm is given by

1=qk
i ¼ b

�� � Axk
i � dkxk

i

��
2
: ð2:11Þ

By applying Algorithm 2 one can solve the shifted linear systems on the right hand side of (2.9). The al-

gorithm stops if the linear system with the smallest shift is solved to the desired accuracy �. This is a well-

known technique [9] which is used also in lattice QCD [10]. However, the problem with this method is that

one needs to store a large number of vectors that is proportional to m. This could be prohibitive if m is say

larger than 10.

In fact, the right-hand side of (2.9) can be written in terms of solutions xk
n; k ¼ 1; . . . ;m as a sum of

scalars

Fðb;AÞ �
Xm

k¼1

ckwk; wk ¼ bTxk: ð2:12Þ

Therefore, it is easy to replace the vector recurrences by scalar recurrences of the form

~wwk
iþ1 ¼ �ð~wwk

i ai þ ~wwk
i�1bi�1Þ=bi: ð2:13Þ

In this way one obtains the Algorithm 3. It is clear that by applying Algorithm 3 one gains substantial

storage savings compared to Algorithm 2. If one has a good Pad�ee approximant for the function f ð�Þ one
can apply Algorithm 3.



Algorithm 3 The Lanczos algorithm for computing wk; k ¼ 1; . . . ;m

Set b0 ¼ 0; q1
1 ¼ 1=kbk2; q0 ¼ o; q1 ¼ q1

1b; wk
0 ¼ o; ~wwk

0 ¼ o; qk
0 ¼ 0

for i ¼ 1; . . . do
v ¼ Aqi

ai ¼ qy
i v

v :¼ v � qiai � qi�1bi�1

bi ¼ kvk2
qiþ1 ¼ v=bi

for k ¼ 1; . . . ;m do
~wwk

iþ1 ¼ �ð~wwk
i ai þ ~wwk

i�1bi�1Þ=bi

qk
iþ1 ¼ �ðqk

i ai þ qk
i�1bi�1Þ=bi

wk
iþ1 ¼ ~wwk

iþ1=q
k
iþ1

end for

if 1=jq1
iþ1j < � then

n ¼ i
stop

end if
end for
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Note that another way to save storage is using the multi-shift Conjugate Gradient variant of [16].

If a Pad�ee approximation is not sufficient or difficult to obtain, the Lanczos method combined with exact

evaluation of the function at Ritz values remains the only viable alternative to evaluate the bilinear forms of

type (2.2).
To see how this is realized I assume that the linear system (2.3) is solved to the desired accuracy using the

Lanczos algorithm, Algorithm 1 and (2.7). In the application considered here one can show that

Xm

k¼1

bT ck

A þ dk1
b ¼ kbk2

Xm

k¼1

eT1
ck

Tn þ dk1n
e1: ð2:14Þ

For the result (2.14) to hold, it is sufficient to show that

bT ck

A þ dk1
b ¼ kbk2eT1

ck

Tn þ dk1n
e1;

which can be shown using the orthonormality property of the Lanczos vectors and (2.10). Note however
that in presence of roundoff errors the orthogonality of the Lanczos vectors is lost but the result (2.14) is

still valid. This issue is beyond the scope of this paper. However, for a detailed survey the reader may

consult the work of Golub and Strakos, Cahill et al. [6,12].

From this result and the convergence of the partial fractions to the matrix function f ð�Þ, it is clear that

Fðb;AÞ � F̂Fnðb;AÞ ¼ kbk2eT1 f ðTnÞe1: ð2:15Þ

Note that the evaluation of the right hand side is a much easier task than the evaluation of the right-hand

side of (2.2). A straightforward method is the spectral decomposition of the symmetric and tridiagonal

matrix Tn:

Tn ¼ ZnXnZT
n ; ð2:16Þ

whereXn 2 Rn�n is a diagonalmatrix of eigenvaluesx1; . . . ;xn of Tn andZn 2 Rn�n is the correspondingmatrix

of eigenvectors, i.e., Zn ¼ ½z1; . . . ; zn�. From (2.15) and (2.16) it is easy to show that (see for example [11])
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F̂Fnðb;AÞ ¼ kbk2eT1Znf ðXnÞZT
n e1; ð2:17Þ

where the function f ð:Þ is now evaluated at individual eigenvalues of the tridiagonal matrix Tn.

The eigenvalues and eigenvectors of a symmetric and tridiagonal matrix can be computed by the QL

method with implicit shifts [19]. The method has an Oðn3Þ complexity. Fortunately, one can compute (2.17)

with only an Oðn2Þ complexity. Closer inspection of Eq. (2.17) shows that besides the eigenvalues, only the

first elements of the eigenvectors are needed

F̂Fnðb;AÞ ¼ kbk2
Xn

i¼1

z21if ðxiÞ: ð2:18Þ

It is easy to see that the QL method delivers the eigenvalues and first elements of the eigenvectors with
Oðn2Þ complexity. 2

A similar formula (2.18) is suggested by Bai et al. [1]) based on quadrature rules and Lanczos poly-

nomials. The Algorithm 4 is thus another way to compute the bilinear forms of the type (2.2).
Algorithm 4 The Lanczos algorithm for computing (2.2)

Set b0 ¼ 0; q1 ¼ 1=kbk2; q0 ¼ o; q1 ¼ q1b
for i ¼ 1; . . . do

v ¼ Aqi

ai ¼ qy
i v

v :¼ v � qiai � qi�1bi�1

bi ¼ kvk2
qiþ1 ¼ v=bi

qiþ1 ¼ �ðqiai þ qi�1bi�1Þ=bi

if 1=jqiþ1j < � then
n ¼ i
stop

endif
end for

Set ðTnÞi;i ¼ ai; ðTnÞiþ1;i ¼ ðTnÞi;iþ1 ¼ bi, otherwise ðTnÞi;j ¼ 0

Compute xi and z1i by the QL method

Evaluate (2.2) using (2.18)
Clearly, the Lanczos algorithm and Algorithm 3 has an OðnNÞ complexity, whereas Algorithm 4 has a

greater complexity: OðnNÞ þOðn2Þ. However, Algorithm 4 delivers an exact evaluation of (2.2). For typical

applications in lattice QCD the Oðn=NÞ additional relative overhead is small and therefore Algorithm 4 is

the recommended algorithm among all three algorithms presented in this section.
A remark on stopping criteria is also desirable. The method of Bai et al. [1] computes the relative dif-

ferences of (2.18) between two successive Lanczos steps and stops if they do not decrease below a given

accuracy. In order to perform the test their algorithm needs to compute the eigenvalues of Ti at each

Lanczos step i. This may be a large computational overhead. The test proposed here is safe since the

computation ends when the the underlying liner system is solved to the desired accuracy. However, this may

be too demanding since the prime interest here is the computation of the bilinear form (2.2).

To illustrate this situation I give an example from a 123 � 24 lattice with l ¼ 0:2, Wilson input operator

and a SUð3Þ gauge field background at bare gauge coupling b ¼ 5:9. I compute the bilinear form (2.2) for
2 I thank Alan Irving for the related comment on the QL implementation in [19].



Fig. 1. Normalized recursive residual (solid line) and relative differences of (2.18) (dotted line) produced by Algorithm 4.
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f ðsÞ ¼ log tanh
ffiffi
s

p
; s 2 Rþ ð2:19Þ

and A ¼ H 2
W, b 2 CN . The real and imaginary parts of the b�elements are chosen randomly from the set

fþ1;�1g.
In Fig. 1 are shown the normalized recursive residuals q0=qi ¼ b � Axik k2= bk k2, i ¼ 1; . . . ; n and relative

differences of (2.18) between two successive Lanczos steps. The figure illustrates clearly the different regimes

of convergence for the linear system and the bilinear form. The relative differences of the bilinear form

converge faster than the computed recursive residual. This example indicates that a stopping criterion based

on the solution of the linear system may indeed be strong and demanding. Therefore, the recommended

stopping criteria would be to monitor the relative differences of the bilinear form but less frequently than

proposed by Bai et al. [1]. More investigations are needed to settle this issue. Note also the roundoff effects

(see Fig. 1) in the convergence of the bilinear form which are a manifestation of the finite precision of the
machine arithmetic.
3. Conclusion

In this paper I have described computational methods needed to evaluate the effective action of the

theory with suppressed cutoff modes.

All methods described in this paper show that the effective action of UV-suppressed fermions can be
computed with at most OðNnÞ þOðn2Þ complexity. This makes a Oðn2Þ overhead compared to standard

fermions. The additional relative overhead Oðn=NÞ tends to be small on large lattices. Therefore, it may be

concluded that UV-suppressed fermions have similar computational complexity as standard fermions.
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